Multivariate Archimedean Copulas, d-monotone Functions and l1-norm Symmetric Distributions
نویسنده
چکیده
It is shown that a necessary and sufficient condition for an Archimedean copula generator to generate a d-dimensional copula is that the generator is a d-monotone function. The class of d-dimensional Archimedean copulas is shown to coincide with the class of survival copulas of d-dimensional l1-norm symmetric distributions that place no point mass at the origin. The d-monotone Archimedean copula generators may be characterized using a little-known integral transform of Williamson [Duke Math. J. 23 (1956) 189–207] in an analogous manner to the well-known Bernstein–Widder characterization of completely monotone generators in terms of the Laplace transform. These insights allow the construction of new Archimedean copula families and provide a general solution to the problem of sampling multivariate Archimedean copulas. They also yield useful expressions for the d-dimensional Kendall function and Kendall’s rank correlation coefficients and facilitate the derivation of results on the existence of densities and the description of singular components for Archimedean copulas. The existence of a sharp lower bound for Archimedean copulas with respect to the positive lower orthant dependence ordering is shown.
منابع مشابه
Tail Approximation of Value-at-Risk under Multivariate Regular Variation
This paper presents a general tail approximation method for evaluating the Valueat-Risk of any norm of random vectors with multivariate regularly varying distributions. The main result is derived using the relation between the intensity measure of multivariate regular variation and tail dependence function of the underlying copula, and in particular extends the tail approximation discussed in E...
متن کاملFrom Archimedean to Liouville copulas
We use a recent characterization of the d-dimensional Archimedean copulas as the survival copulas of d-dimensional simplex distributions (McNeil and Nešlehová (2009)) to construct new Archimedean copula families, and to examine the relationship between their dependence properties and the radial parts of the corresponding simplex distributions. In particular, a new formula for Kendall’s tau is d...
متن کاملA Note on Upper Tail Behavior of Liouville Copulas
The family of Liouville copulas is defined as the survival copulas of multivariate Liouville distributions, and it covers the Archimedean copulas constructed by Williamson’s d-transform. Liouville copulas provide a very wide range of dependence ranging from positive to negative dependence in the upper tails, and they can be useful in modeling tail risks. In this article, we study the upper tail...
متن کاملThe Frailty and the Archimedean Structure of the General Multivariate Pareto Distributions
The mixture property of the general multivariate Pareto MP distributions has been studied by Yeh (2004a). Arnold (1996) mentioned that any mixing distribution with support (0,∞) is a candidate for a frailty model. This fact drives Yeh to study the frailty structure of the MP distributions. It is discerned that the MP distributions is in the one-parameter kvariate Clayton family with k-variate A...
متن کاملSimulating Exchangeable Multivariate Archimedean Copulas and its Applications
Multivariate exchangeable Archimedean copulas are one of the most popular classes of copulas that are used in actuarial science and finance for modelling risk dependencies and for using them to quantify the magnitude of tail dependence. Owing to the increase in popularity of copulas to measure dependent risks, generating multivariate copulas has become a very crucial exercise. Current methods f...
متن کامل